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We consider families (Lt , t # T ) of positive linear operators such that each Lt is
representable in terms of a stochastic process starting at the origin and having non-
decreasing paths and integrable stationary increments. For these families, we give
probabilistic characterizations of the best possible constants both in preservation
inequalities concerning the first modulus and in preservation of Lipschitz classes of
first order. As an application, we compute such constants for the Bernstein, Sza� sz,
Gamma, Baskakov, and Beta operators. � 1998 Academic Press

1. INTRODUCTION AND MAIN RESULT

Many families L :=(Lt , t # T) of positive linear operators usually considered
in the literature on approximation theory allow for a probabilistic representation
of the form (cf. [1, 2])

Lt f (x)=Ef (Zt(x)), x # I, t # T, (1)

where I=[0, 1] or I=[0, �), T=[1, 2, ...] or T=(0, �), E denotes
mathematical expectation, (Zt(x), x # I, t # T) is a double-indexed stochastic
process of integrable random variables taking values in I, and f is any real
measurable function on I for which the right-hand side in (1) is well defined.

The aim of this note is to obtain the best possible constants both in
preservation inequalities referring to the first modulus of continuity and in
preservation of Lipschitz classes of first order, for families L of operators
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having the form (1) and such that, for each t # T, the stochastic process
(Zt(x), x # I ) satisfies the following properties:

(A) Nondecreasing paths. For all x, y # I with x� y, we have Zt(x)
�Zt( y) a.s.

(B) Zt(0)=0 a.s.

(C) Stationary increments. For all x, y # I with x� y, the random
variables Zt( y)&Zt(x) and Zt( y&x)&Zt(0) are identically distributed.

As it is shown in [2], the most usual positive linear operators fulfill
condition (A). However, some well-known operators do not satisfy (B) or
(C) (see Section 3).

Under the preceding assumptions, we show that such best constants can
be characterized as expectations of appropriate functions of the stochastic
process under consideration (Theorem 1). Thanks to this characterization
and the probabilistic structure of the process involved, we are able to
provide exact values of these constants for certain important families of
operators (see Section 2).

More precisely, recall that the usual first modulus of continuity of a real
function f defined on I is given by

|( f ; $) :=sup [ | f (x+h)& f (x)|: x, x+h # I, 0<h�$], $ # I*,

where I* :=I"[0]. Denote by M(I ) the set of all real measurable functions
f defined on I such that |( f ; $)<�, $ # I*. Also, recall that, for any
f # M(I ) and $ # I*, we have

|( f ; x)�|( f ; $) �x
$| , x # I, (2)

where WxX stands for the smallest integer greater than or equal to x.
Finally, denote by Lip(A, :) the Lipschitz class of first order with constant
A>0 and exponent : # (0, 1], i.e.,

Lip(A, :) :=[ f # M(I ): |( f ; $)�A$:, $ # I*].

Observe that if f # M(I ), Lt f (x) is well defined for all x # I and t # T.
Actually, assumptions (A) and (B), together with (2), give us

Lt | f |(x)�| f (0)|+E|( | f |; Zt(x))

�| f (0)|+|( | f |; 1) E WZt(x)X<�.

As far as the first modulus is concerned, we shall be interested in the
constants
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Ct($) := sup
f # M(I )

|(Lt f ; $)
|( f ; $)

, $ # I*, t # T, (3)

Ct := sup
$ # I*

Ct($), t # T, C :=sup
t # T

Ct . (4)

With respect to the Lipschitz classes, we shall consider, for any : # (0, 1],
the constants

Kt(:) := sup
$ # I*

sup
f # Lip(1, :)

|(Lt f ; $)
$: , t # T, (5)

K(:) :=sup
t # T

Kt(:). (6)

As far as we know, preservation inequalities concerning the first modulus
of continuity for families L of discrete operators were first obtained by
Kratz and Stadtmu� ller [11]. Better estimates for more general families can
be found in [1]. On the other hand, Lindvall [12] and Brown, Elliott and
Paget [6], among others, have shown that the Bernstein polynomials preserve
Lipschitz constants. In a more general setting, a probabilistic approach to
this problem is given in [1, 10].

The question, however, of finding the best possible constants has only been
considered with regard to the first modulus of continuity and for particular
families of operators. For instance, Anastassiou, Cottin, and Gonska [5]
provide the best absolute constant in the case of Bernstein polynomials on the
standard m-simplex, while for the classical Sza� sz operator, we refer to [4].

With the notations above, our main result is stated as follows.

Theorem 1. Let (Lt , t # T) be a family of positive linear operators
having the form (1) and satisfying assumptions (A)�(C). Then, for each t # T,
we have

(a) Ct($)=E WZt($)�$X=��
k=0 P(Zt($)>k$), $ # I*.

(b) Kt(:)=sup$ # I* E(Zt($)�$):, : # (0, 1].

Proof. Let t # T be fixed. Let f # M(I ), $ # I*, and x, x+h # I with
0<h�$. From (A)�(C), we have

|Lt f (x+h)&Lt f (x)|�E | f (Zt(x+h))& f (Zt(x))|

�E|( f ; Zt(x+h)&Zt(x))

�E|( f ; Zt(x+$)&Zt(x))

=E|( f ; Zt($)),
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implying that

|(Lt f ; $)�E|( f ; Zt($)), $ # I. (7)

Denote by S(I ) the set of all nondecreasing subadditive functions f # M(I )
such that f (0)=0. Observe that if f # S(I ), then |( f ; x)= f(x), x # I. On the
other hand, Lt(S(I ))�S(I ). In fact, if f # S(I ), Lt f is nondecreasing and
satisfies Lt f (0)=0, by assumptions (A) and (B), respectively. The subaddi-
tivity of Lt f follows from (A)�(C), since

Lt f (x+ y)=Ef (Zt(x+ y))

�Ef (Zt(x))+Ef (Zt(x+ y)&Zt(x))

=Lt f (x)+Lt f ( y), x, y # I.

We therefore conclude that for any f # S(I )

|( f ; $)= f ($), |(Lt f ; $)=Lt f ($), $ # I. (8)

(a) By (7) and (2), we have

Ct($)�E �Zt($)
$ | .

To prove the converse inequality, define g$(x) :=Wx�$X , x # I. Then
g$ # S(I ) and satisfies g$($)=1. Hence, we have from (8)

|(Lt g$ ; $)=Lt g$($)=|(g$ ; $) E �Zt($)
$ | .

The conclusion follows.

(b) Fix : # (0, 1]. Applying (7) to any function f # Lip(1, :), we
obtain

Kt(:)� sup
$ # I*

E(Zt($)�$):.

On the other hand, consider the function f1(x)=x:, x # I. Since f1 #
Lip(1, :) & S(I ), we have from (8)

|(Lt f1 ; $)=Lt f1($)=$:E(Zt($)�$):, $ # I*.

This completes the proof of Theorem 1.

131BEST CONSTANTS



File: DISTL2 316405 . By:CV . Date:31:03:98 . Time:08:51 LOP8M. V8.B. Page 01:01
Codes: 2405 Signs: 1375 . Length: 45 pic 0 pts, 190 mm

Remark 1. Denote by C(I ) the set of all real continuous functions
defined on I. We claim that

Ct($)=Ct*($) := sup
f # M(I ) & C(I )

|(Lt f ; $)
|( f ; $)

, $ # I*, t # T.

Indeed, for any 0<=<$, we consider the function g$, = # M(I ) & C(I ) given
by

g$, =(x)= :
�

k=0
\x&k$

=
&1+ 1(k$, k$+=)(x)+ g$(x), x # I,

where, as before, g$(x)=Wx�$X , x # I. Observe that lim= � 0 g$, =(x)= g$(x),
x # I, and |(g$, = ; $)=1, 0<=<$. Thus, using Theorem 1(a) and dominated
convergence, we obtain

Ct($)=Lt g$($)= lim
= � 0

(Lt g$, =($)&Lt g$, =(0))

�lim sup
= � 0

|(Lt g$, = ; $)�Ct*($),

which shows the claim.

Remark 2. It is readily seen from definition (3) that the function Ct($),
$ # I*, is subadditive for any t # T. On the other hand, we have from
Theorem 1(a) the upper bound

Ct($)�P(Zt($)>0)+E \Zt($)
$ + , $ # I*, t # T.

In particular, Ct($)�2, whenever EZt($)=$.

2. EXAMPLES

In this section, we consider classical families of Bernstein-type operators
which allow for a probabilistic representation of the form (1) and satisfy
assumptions (A)�(C). All the following representations were already given
in [2]. Exact values of the constants (3)�(6) are obtained by using
Theorem 1 and the stochastic properties of the process involved in each
case. In all the following examples, the operators under consideration are
centered, that is, EZt ($)=$, $ # I, t # T.

(A) Bernstein Operator. The Bernstein polynomials of a real function f
on [0, 1] can be represented as
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Bn f (x) := :
n

k=0

f (k�n) \n
k+ xk(1&x)n&k

=Ef \Sn(x)
n + , x # [0, 1], n=1, 2, ...,

where

Sn(x)= :
n

k=1

1[0, x](Xk), x # [0, 1], n=1, 2, ...

and (Xk)k�1 is a sequence of independent and on the interval [0, 1]
uniformly distributed random variables.

By Theorem 1(a) and [8, p. 59], we have for any $ # (0, 1] and
n=1, 2, ...

Cn($)= :
[1�$]

k=0

P(Sn($)>kn$)=|
$

0
:

[1�$]

k=0

x[kn$](1&x)n&[kn$]&1

;([kn$]+1, n&[kn$])
dx, (9)

where [x] stands for the integral part of x, ;( } , } ) is the beta function, and
it is understood that ;( } , 0)=�.

For any n=1, 2, ... and $ # (1&1�n, 1), it follows from (9) and Remark 2
that 1&(1&$)n+$n�Cn($)�2, showing that

Cn=C=2, n=1, 2, ... .

This last result was also obtained in [5] using a different approach.
Finally, Theorem 1(b), together with Jensen's inequality, gives us

Kn(:)=K(:)=1, : # (0, 1], n=1, 2, ... .

We point out that the inequalities Kn(:)�1 and K(:)�1 have been shown
in [5, Theorem 9] by applying a technique based on least concave majorants.

(B) Sza� sz�Mirakyan Operator. For this operator, we have the representa-
tion

St f (x) :=e&tx :
�

k=0

f (k�t)
(tx)k

k!
=Ef \Ntx

t + , x�0, t>0,

where (Nt)t�0 is a standard Poisson process.
Using Theorem 1(a) and the well-known formula (cf. [8])

P(Nt�n)=
1

(n&1)! |
t

0
e&xxn&1 dx, t�0, n=1, 2, ... (10)
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we obtain for any $>0 and t>0,

Ct($)= :
�

k=0

P(Nt$>kt$)=|
t$

0
e&x :

�

k=0

x[kt$]

[kt$]!
dx,

which, thanks to [4, Lemma 2], implies that

Ct=C=2&
1
e

, t>0.

Since (Nt�t)t>0 converges to 1 almost surely, as t � �, we have from
Fatou's lemma and Jensen's inequality

1�lim inf
t � �

E \Nt

t +
:

�sup
t>0

E \Nt

t +
:

�1, : # (0, 1].

Therefore, Theorem 1(b) gives us

Kt(:)=K(:)=1, : # (0, 1], t>0.

(C) Gamma Operator. A suitable probabilistic representation for this
operator is

Gt f (x) :=
1

1(t) |
�

0
f \x%

t + %t&1e&% d%=Ef \xUt

t + , x�0, t>0,

where (Ut)t�0 is a gamma process, i.e., a process starting at the origin,
having stationary independent increments and such that, for each t>0, Ut

has the gamma density

dt(%) :=
%t&1e&%

1(t)
, %>0, (11)

1(t) being the gamma function. Theorem 1(a) yields in this case for any
$>0 and t>0

Ct($)=Ct=E �Ut

t |=
tt

1(t) |
�

0
W%X %t&1e&t% d%. (12)

Since t&1Ut converges to 0 in probability, as t � 0, we have (cf. [7, p. 67])

lim
t � 0

E \1+
Ut

t
&�Ut

t |+=0. (13)

This, together with (12), immediately implies that C=2.
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By Theorem 1(b),

Kt(:)=E \Ut

t +
:

=
1
t:

1(t+:)
1(t)

, : # (0, 1], t>0.

Finally, the process t&1Ut converges to 1 almost surely, as t � �, as it
follows from the strong law of large numbers. Thus, as in example (B), we
obtain

K(:)=1, : # (0, 1].

(D) Baskakov Operator. We give the following representation for the
Baskakov operator

Bt* f (x) := :
�

k=0

f (k�t) \t+k&1
k + xk

(1+x)t+k

=Ef \NxUt

t + , x�0, t>0,

where (Nt)t�0 is a standard Poisson process and (Ut)t�0 is a gamma
process independent of (Nt)t�0.

Conditioning on Ut and using (10), we have for any $>0 and t>0

Ct($)=|
$

0
:
�

k=0

1
;(t, [kt$]+1)

x[kt$]

(1+x)[kt$]+t+1 dx.

In this case, we shall show that C=2. In view of Remark 2, it will suffice
to prove that limt � 0 lim$ � � Ct($)=2. To this end, observe that

lim
$ � �

N$Ut

$t
=

Ut

t
, a.s., t>0. (14)

Since Ut is a continuous random variable, we have from Theorem 1(a), the
dominated convergence theorem and (14) and (13)

lim
t � 0

lim
$ � �

Ct($)=lim
t � 0

lim
$ � �

E �N$Ut

$t |= lim
t � 0

E �Ut

t |=2.

On the other hand, applying successively Fatou's lemma, (14), and
Jensen's inequality, we obtain
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E \Ut

t +
:

�lim inf
$ � �

E \N$Ut

$t +
:

�sup
$>0

|
�

0
E \N$%

$t +
:

dt(%) d%

�|
�

0 \%
t+

:

dt(%) d%=E \Ut

t +
:

, t>0,

where dt(%) is defined in (11). Consequently, from Theorem 1(b)

Kt(:)=E \Ut

t +
:

=
1
t:

1(t+:)
1(t)

, : # (0, 1], t>0,

implying, as we have seen in example (C), that

K(:)=1, : # (0, 1].

(E) Beta Operator. We consider the beta operator Bt introduced by
Mu� hlbach [13] (see also [3, 9]) for which we give the representation

Bt f (x) :=|
1

0
f (%)

%tx&1(1&%)t(1&x)&1

;(tx, t(1&x))
d%=Ef \Utx

Ut + , x # [0, 1], t>0,

where (Ut)t�0 is a gamma process.
We can see that for any $ # (0, 1] and t>0,

Ct($)=E �Ut$

$Ut |=
$t$

;(t$, t(1&$)) |
1�$

0
W%X %t$&1(1&%$)t(1&$)&1 d%. (15)

As in example (C), we have

lim
$ � 0

E \1+
Ut$

$Ut
&�Ut$

$Ut |+=0.

This, together with (15) and Remark 2, gives

Ct=C=2, t>0.

Finally, choosing $=1, Theorem 1(b) and Jensen's inequality immediately
yield

Kt(:)=K(:)=1, : # (0, 1], t>0.
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3. CONCLUDING REMARKS

Apart from the preceding examples, there are other families of operators
satisfying the assumptions made in Section 1, for which Theorem 1 is applicable,
for instance, Mu� ller gamma operators, inverse beta operators, and Stancu
operators (cf. [2, Sect. 4]). On the other hand, Bernstein�Durrmeyer and
Bernstein�Kantorovich operators, as well as their generalizations, do not
satisfy condition (B). Bleimann�Butzer�Hahn operators and Meyer�Ko� nig�
Zeller operators, among others, do not satisfy condition (C). Notwithstanding,
since all the aforementioned operators satisfy condition (A), we can give sharp
upper bounds for all the corresponding constants (3)�(6), as it is shown in [1].

Under weaker assumptions than those considered in Section 1, it does
not seem easy to provide exact values of all the constants (3)�(6), nor to
obtain the constants Ct($) and Kt(:) in a closed form extending that
established in Theorem 1. Instead, some partial results can be given for
certain families of operators. We mention the following examples:

(a) Convolution Operators. These operators have the form

Lt f (x)=Ef (x+Zt), &�<x<�, t>0, (16)

where each Zt is an integrable random variable whose distribution does
not depend upon x. In particular, if Zt has the normal distribution with
zero mean and variance equal to 1�t, we obtain the classical Weierstrass
operator. It is readily seen from (16) that

Ct($)=Ct=C=1, $>0, t>0.

(b) (Modified) Meyer�Ko� nig�Zeller Operator. A probabilistic represen-
tation for this operator is

Mt f (x) :=(1&x)t+1 :
�

k=0

f \ k
k+t+\

t+k
k + xk=Ef (Zt(x)),

where

Zt(x) :=
Nq(x) Ut+1

Nq(x) Ut+1
+t

, q(x) :=
x

1&x
, x # [0, 1), t>0, (17)

(Nt)t�0 is a standard Poisson process, and (Ut)t�0 is a gamma process
independent of (Nt)t�0. In this case, we shall show that C=2. Actually,
since condition (A) is satisfied and EZt(x)=x, x # [0, 1), t>0, the inequality
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C�2 follows from [1, Corollary 2]. As for the converse inequality, observe
that

Ct($)�E �Zt($)
$ |�P(Zt($)>0)+P(Zt($)>$)

=1&(1&$)t+1+P \
Nq($) Ut+1

tq($)
>1+ , $ # (0, 1), t>0,

as it follows from (17). Taking limits in the preceding inequalities as $ � 1
and using the strong law of large numbers for the Poisson process, we
obtain

C�1+P \Ut+1

t
>1+ , t>0.

The conclusion follows by letting t � 0.

(c) Lipschitz Constants. Let (Lt , t # T ) be a family of operators of
the form (1). Assume that condition (A) is satisfied and that EZt(x)=x,
x # I, t # T, where I is allowed to be any subinterval of the real line.

Then, it is shown in [1, Corollary 1] that K(:)�1, : # (0, 1]. Under the
following additional assumption

lim
t � �

Lt f (x)= f (x), x # I, f # Lip(1, :), : # (0, 1], (18)

we have

K(:)=1, : # (0, 1].

To see this, let f0 # Lip(1, :) be such that |( f0 ; $)=$:, 0�$<l(I ), where
l(I ) denotes the length of I. For any x, x+h # I with 0�h�$, we have
from (18)

| f0(x+h)& f0(x)|= lim
t � �

|Lt f0(x+h)&Lt f0(x)|�K(:) $:,

showing that K(:)�1. The conclusion follows.
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